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Abstract

This project aims to explore the FashionMNIST [1]
dataset using a combination of unsupervised and su-
pervised learning techniques. The first phase in-
volves a geometry analysis to reduce the dataset’s
dimensionality, followed by an unsupervised phase to
classify the reduced-data. The unsupervised phase
will provide labels that will be used in the super-
vised learning phase. During the latter, the train-
ing data will be used along with the labels coming
from unsupervised phase to train the model: this
part will be addressed as semi-supervised approach.
Finally, a fully-supervised learning approach will be
performed using the true training labels. The results
obtained from semi-supervised and fully-supervised
approaches will be compared to each other. The ul-
timate goal of the project is to evaluate the effective-
ness of the semi-supervised and fully supervised ap-
proaches in the classification task. The code utilized
can be found here [2].

1 Load data

After the data was loaded, 10000 training data and
3000 test data were sampled from the complete
dataset to reduce computation time. The data was
then normalized and exported into NumPy arrays
for geometric analysis and unsupervised part. To
perform stochastic gradient descent, a DataLoader
from PyTorch was utilized for training the neural net-
works. This allowed efficient batch loading and shuf-
fling of the data during the training process. Figure
1 displays the first ten images from the training set,
along with their labels to give an overview.

Figure 1: First 10 training images with labels

2 Understanding data geome-
try

The analysis of the underlying geometry of the data
involved three approaches namely Linear PCA [3]
(figure 2), Kernel PCA [4] (figure 3) with an rbf ker-
nel (figure 4), and Kernel PCA with a polynomial
kernel. A plot was created using these approaches to
visualize the results.

Figure 2: Linear PCA

1



From the plot, it was observed that a gamma value
greater than 0.1 for rbf kernel did not provide a good
projection. However, for gamma values close to zero,
the projection is effective in understanding the under-
lying data geometry. This observation allowed a clear
separation between ”brighter” and ”darker” labels.
For the polynomial kernel, it was observed that as the

Figure 3: Gaussian kernel PCA

degree increased, the data became more stretched,
making it difficult to understand the geometry. On
focusing on lower values (up to 5), a pretty good sep-
aration was achieved, but there was still some prob-
lems. For instance, the green-scale and light-blue
scale points were spread out and mixed each other,
making it challenging to differentiate them.

Figure 4: Polynomial kernel PCA

3 Bridging unsupervised and
supervised

In this section, the method to best separate the data
geometry was selected, and it was used to project the
data onto its 10 principal components. The result-
ing reduced-dimension dataset was then subjected to
clustering, where each image is assigned a label rang-
ing from 0 to 9.

Following the previous analysis, the rbf kernel was
found to be better than the polynomial kernel. The
optimal gamma values were identified to be 0.0001
and 0.001 by visualizing the projection. Figure 5
shows an example of the projection of the same im-
ages in 1 onto their 10 principal components using
the rbf kernel with gamma equal to 0.0001.
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Figure 5: Projection of the first 10 training images

Subsequently, unsupervised learning was intro-
duced, and kmeans [5] was determined to be a
suitable option. To evaluate the projection and
clustering, the correspondence between the kmeans
algorithm-assigned labels and the ground-truth la-
bels was assessed. It is important to note that the
labels assigned by the kmeans algorithm might not
match the true labels (kmeans might permute the la-
bels of the classes). To address this issue, the homo-
geneity score [6] and the completeness score [6] were
used to evaluate performance, taking into account the
aforementioned permutations. Figure 6 displays two
confusion matrices.

Figure 6: Confusion matrix

The first confusion matrix compares the ground-
truth labels with the labels generated directly from
the kmeans algorithm. On the other hand, the second
confusion matrix compares the ground-truth labels
with the kmeans mapped-labels. In this case, kmeans
clusters are mapped to the true label that is more
frequent within that cluster. Note that homogeneity
score and completeness score don’t change if com-

puted with the mapped-labels or with the unmapped-
labels, since those metrics are desgined to be names-
independent. It was found that homogeneity score
and completeness score were 48.2% and 48.6%, re-
spectively. Overall, these confusion matrices help to
evaluate the performance of the projection and clus-
tering methods used in the analysis: based on this, it
can be concluded that while the accuracy is not ex-
emplary, the combination of dimensionality reduction
with kmeans clustering leads to satisfactory results.

Furthermore, figure 7 shows a plot of the eigenval-
ues spectrum generated by the dimensionality reduc-
tion method chosen (rbf kernel). This plot is required
to confirm that the choice of projecting onto 10 prin-
cipal components is consistent with the so called el-
bow rule.

Figure 7: Eigenvalues spectrum

4 Classification

After unsupervised part, four classifiers were trained
[2]. Firstly, the labels generated from the kmeans
clustering algorithm were utilized without consider-
ing the actual matching with the true labels. Then,
the same classifiers were trained using the true labels.
The four classifiers were Support Vector Machine
(SVM) [7] with radial basis function kernel (rbf), two
Fully Connected Neural Network (FCNN) [8] with
different architecture, and Convolutional Neural Net-
work (CNN) [8]. The SVM was chosen after perform-
ing a grid-search cross validation: the best hyper-
parameters turned out to be C = 10.0 and gamma

3



Table 1: Test Accuracy

Model Accuracy
on kmeans

labels
before map.

Aaccuracy
on kmeans
labels after

map.

Accuracy
on mapped

kmeans
labels

Accuracy
on ground-
truth labels

SVM 22.6% 53.5% 53.3% 87.5%
FCNN1 22.6% 53.8% 54.1% 84.57%
FCNN2 10.5% 11.3% 10.5% 9.7%
CNN 22.9% 53.2% 40.8% 85.8%

value 0.001. For the FCNN, the first had one hid-
den layer with 128 neurons, while the second had one
hidden layer with 256 neurons, both followed by a
leaky ReLU activation function. The CNN had three
convolution layer with 16, 32 and 64 output chan-
nels respectively. Each convolutional layer has been
combined with average pooling layers with 2x2 kernel
size, followed by a leaky ReLU activation function.
In the first part of the classification task, the aim
was to classify the data points into their correspond-
ing clusters as determined by the kmeans algorithm,
without any knowledge of the actual ground-truth la-
bels. In the second part, the goal was to compare the
effectiveness of these two approaches.

5 Assess the pipeline

In this section, the overall accuracy of the classifiers
on the test set was evaluated by comparing the pre-
dicted labels with the ground-truth test labels. It
should be noted that for the first method (using la-
bels from kmeans clustering algorithm), the predicted
labels may not match the ground-truth labels. To
address this, the same approach as the one used for
building the mapped version of the labels generated
by kmeans was employed. The predicted labels is
grouped, and each group is mapped to the ground-
truth label that is most represented in that group.
Evaluating the accuracy of the second method (using
ground-truth labels) is instead straightforward.

Two distinct training approaches were utilized so
far. The first method involved training using kmeans-
generated unmapped labels, followed by label reorder-

ing/mapping after the training. The second was
training using the readily available ground-truth la-
bels. A third approach was tested in [2]: directly
train the classifier with mapped labels generated by
kmeans (i.e. reordering of the labels is performed
before training). This approach yielded similar re-
sults as the first method due to the inconsequential
nature of label naming. Kmeans recognizes the in-
trinsic characteristics of the data: mapping the labels
before training, or training with unsorted labels and
reordering after, produces relatively equal results. All
the results can be found in table 1. Note that the test
accuracy is roughly the same for SVM, FCNN1 and
CNN, while FCNN2 has significantly lower test accu-
racy: this could be due to the fact that FCNN2 has
higher number of parameters (two times the neurons
of FCNN1), and it is well-known that many degrees
of freedom lead to overfitting: probabily this cause
low results for FCNN2 on the test set.

6 Conclusions

In conclusion, this project employed a combination
of unsupervised and supervised learning techniques
to classify the FashionMNIST dataset. Three di-
mensionality reduction methods were analyzed; then
the reduced-dimension dataset was clustered using
kmeans and the labels produced were used for semi-
supervised and supervised learning tasks. SVM,
FCNN, and CNN models were trained and their ac-
curacy was subsequently evaluated: the results show
that the semi-supervised approach using kmeans-
generated labels can yield to satisfactory results.
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Overall, this study demonstrates the effectiveness of
unsupervised learning as a precursor to supervised
learning approaches, and it also highlights the intrin-
sic ability of unsupervised learning techniques to rec-
ognize data features, regardless of label names.

Figure 8 displays performance of SVM on the same
8 images in the three different approaches: training
on pure unmapped labels, training on unmapped la-
bels but with labels-reordering after training, train-
ing directly on mapped labels, training on true labels.

Figure 8: Comparison of different approaches.
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