
A novel crossover for evolutionary GAN

Michele Alessi

May 2024

Abstract

GANs models [1] have recently proven to be
among the best generative models, reaching the
state of the art in several fields.
Despite this, as highlighted by numerous stud-
ies [2], [3], [4], [5], they suffer from several prob-
lems including non-convergence, mode collapse
(the generator produces a low sampling variety),
and diminished gradient (the discriminator gets
too successful that the generator gradient van-
ishes and learns nothing).
Several approaches have been attempted to over-
come these problems, including the use of genetic
algorithms to improve model performance [6], [7],
[8], [9].
In this work, we will define a new crossover oper-
ator acting on a population of generators, and we
will qualitatively show how this simple operation
contributes to obtaining better results, improv-
ing generalization, and counteracting the mode
collapse problem.

1 Background

Generative Adversarial Networks (GANs) [1] is
a machine learning framework introduced by Ian
Goodfellow et al. in 2014. Given a training set,
GAN aims to learn the probability distribution
of the training set itself, with the ultimate
goal of generating new samples. In the GAN
framework, there are two primary components:
the generator and the discriminator. These
components are trained simultaneously through
a min-max game setting.

Generator The generator takes random noise
as input and generates samples: it learns to
transform input noise into data samples that are
indistinguishable from real data.
Mathematically, the generator function is rep-
resented as G(z), where z is a random noise

vector sampled from a prior distribution (often
Gaussian or Uniform).

Discriminator The discriminator acts as a
binary classifier, aiming to distinguish between
real data samples and fake samples generated
by the generator: it is trained to assign high
probabilities to real data and low probabilities
to fake data.
Mathematically, the discriminator function is
represented as D(x), where x is a data sample,
and D(x) represents the probability that x
comes from the real data distribution.

Training Training a GAN model involves two
steps, both performed at the batch-processing
level.
Given a batch of real data samples, the discrim-
inator is trained to maximize the probability of
assigning correct labels (1 for real and 0 for fake)
to these samples. Simultaneously, the discrim-
inator is trained to minimize the probability of
assigning correct labels to fake samples gener-
ated by the generator.
The generator is trained to generate samples that
are likely to be classified as real by the discrim-
inator (actually, the generator tries to fool the
discriminator). In other words, it aims to min-
imize the probability of the discriminator cor-
rectly classifying generated samples as fake. This
can be formalized as a min-max problem as fol-
lows:

min
G

max
D

Ex∼p(x)[logD(x)]+

Ez∼p(z)[log(1−D(G(z)))] (1)

where the first term corresponds to real data sam-
ples and the second term corresponds to fake
samples generated by the generator network.

1

2 Prior Works on Evolution-
ary GAN

GAN has shown to be a very powerful frame-
work in generative AI, but it suffers from training
problems such as instability and mode collapse.
Evolutionary GAN ([6], [7], [8], [9]) was then in-
troduced as a possible solution for stable GAN
training and improved generative performance.
Differently from standard GANs, Evolutionary
GANs utilize different adversarial training objec-
tives as mutation operations and evolve a pop-
ulation of generators. An evaluation mechanism
is implemented to measure the quality and di-
versity of generated samples (based on the gradi-
ent of the discriminator D), such that only well-
performing generators are preserved through it-
erations. In this section we focus on the work
of Wang et al. [6] since their proposed method
deals only with mutation operators. This will
allow us to easily add our crossover operator to
their method. Other work ([7], [8], [9]) has been
done using different crossover operators, and the
following sections will highlight the main differ-
ences, along with the pros and cons.

Evolutionary GAN The main idea is to keep
a population P of generators and inside each
epoch, an evolutionary step is implemented as
follows:

1. for each generator g ∈ P, for each possible
mutation:
(a) update the weights of g through back-

propagation
(b) compute the fitness F of g

2. sort the population wrt the fitness
3. build the next population selecting the best

generators.

Mutations In this framework, the mutations
are introduced as different loss functions used for
updating the generator parameters through back-
propagation. In particular, three different muta-
tions were defined:

Mminmax = Ez∼p(z)[log(1−D(G(z)))] (2)

Mheuristic = −Ez∼p(z)[logD(G(z))] (3)

Mmeanquare = Ez∼p(z)[(D(G(z))− 1)2]. (4)

Fitness The fitness of an individual is com-
puted by combining two factors: the quality fit-
ness score Fq and the diversity fitness score Fd.

Algorithm 1 E-GAN. Default values α =
0.0002, β1 = 0.5, β2 = 0.99, nD = 2, np = 1,
nm = 3, m = 16.

Require: batch size m. D’s updating steps per
iteration nD. Number of parents np. Number
of mutations nm. Adam hyper-parameters
α, β1, β2, the hyper-parameter γ of F .

Require: Initial D’s parameters w0. and G’s
parameters {θ10, θ20, . . . , θ

np

0 }.
1: for number of training iterations do
2: for k = 0, ..., nD do
3: Sample a batch of {x(i)}mi=1 ∼ pdata

(training data), and a batch of
{z(i)}mi=1 ∼ pz (noise samples).

4: gw ← ∇w[
1
m

∑m
i=1 logDw(x

(i))

5: + 1
m

∑np

j=1

∑m/np

i=1 log
(
1−Dw(Gθj (z(i)))

)
]

6: w ← Adam(gw, w, α, β1, β2)
7: end for
8: for j = 0, ..., np do
9: for h = 0, ..., nm do

10: Sample a batch of {z(i)}mi=1 ∼ pz
11: gθj,h ← ∇θjMh

G({z(i)}mi=1, θ
j)

12: θj,hchild ← Adam(gθj,h , θj , α, β1, β2)

13: F j,h ← Fj,h
q + γF j,h

d

14: end for
15: end for
16: {F j1,h1 ,F j2,h2 , . . . } ← sort({F j,h})
17: θ1, θ2, . . . , θnp ← θj1,h1

child , θ
j2,h2

child , . . . , θ
jnp ,hnp

child

18: end for

Those are combined in the final fitness

F = Fq + γFd (5)

where γ is a hyperparameter.
The quality fitness score Fq tells us how good a
generator is in fooling the discriminator, and it
is defined as:

Fq = Ez∼p(z)[D(G(z))]. (6)

The diversity fitness score Fd is used to promote
the diversity of generated samples:

Fd =− log ||∇D − Ex∼p(x)[logD(x)]

− Ez∼p(z)[(1−D(G(z)))]. (7)

If Fd is relatively high, the terms inside the log-
arithm have to be small: in particular, ∇D has
to be small (intuitively a shallow slope), leading
to much more flexibility in classifying the fake
samples, and so more diversity for the generator.
The complete algorithm is described in 1.

2

Figure 1: Evolutionary GAN workflow.

3 A New Crossover

We implemented a new type of crossover, run-
ning on-fly during the training. The idea is to
make generators interact with each other in the
following way:
1. Let g ∈ P be a generator inside the current

population. As we have seen before, to per-
form backpropagation we need to generate
some fake samples with g, feed the discrimi-
nator with those fake samples, compute the
loss, and update the weights of g.

2. Hence, we define a crossover operator by
letting those fake samples be generated by
a randomly chosen generator g′ ∈ P , with
probability pcross.

3. This happens just before the backpropaga-
tion step, and of course, it affects only the
generation phase (ie g′ is used to generate
fake samples, then those samples are used
to compute the loss, and the loss is used to
update the weights of g through backpropa-
gation).

The algortihm is described in 2.

PROs Note that this type of indirect crossover
is very efficient in the sense that it runs on-fly
during the training. In other words, it does not
require further computations but simply uses the
weights coming from another generator of the
population. Consequently, we are able to imple-
ment this operator without minimally affecting
the efficiency of the basic algorithm, while still
managing to define a more general framework.

4 Preliminary Results

In this section, we provide some preliminary re-
sults, comparing them with the results of [6].
Currently, we have only managed to partially

Algorithm 2 Crossover

1: for G ∈ P do
2: j ← U([0, 1])
3: if j > pcross then
4: // no crossover performed
5: ε← U([−1, 1])
6: Fake ← G(ε)
7: Output ← D(Fake)
8: else
9: // get a random generator from P to

update parameters of the current gener-
ator

10: J ← U(0, . . . , np)
11: G = P[J]
12: ε← U([−1, 1])
13: Fake ← G(ε)
14: Output ← D(Fake)
15: end if
16: end for

train the model: [6] trained their model on Nvidia
GTX 1080Ti GPUs, requiring approximately 30
hours on a single GPU to train a model for 64
× 64 images using the DCGAN architecture. In
contrast, we trained our version on a MacBook
with an Apple M1 Pro chip, taking just 5 hours
of training.
As can be seen from Figs. 2-5, the results ap-
pear to be promising. In particular, results on
the interpolation task suggest good generaliza-
tion performances of this method with respect to
the baseline.

Figure 2: Generation: [6].

References

[1] Ian J. Goodfellow, Jean Pouget-Abadie,
Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua

3

Figure 3: Generation: Ours.

𝐺(1 − 𝛼 𝓏1 + 𝛼𝓏2)

𝛼 = 0.0 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9 𝛼 = 1.0

Figure 4: Latent interpolation: [6].

Bengio. Generative adversarial networks,
2014.

[2] Divya Saxena and Jiannong Cao. Generative
adversarial networks (gans survey): Chal-
lenges, solutions, and future directions, 2023.

[3] Hoang Thanh-Tung and Truyen Tran. Catas-
trophic forgetting and mode collapse in gans.
In 2020 International Joint Conference on
Neural Networks (IJCNN), pages 1–10, 2020.

[4] Wei Li, Li Fan, Zhenyu Wang, Chao Ma, and
Xiaohui Cui. Tackling mode collapse in multi-
generator gans with orthogonal vectors. Pat-
tern Recognition, 110:107646, 2021.

[5] Samuel A. Barnett. Convergence problems
with generative adversarial networks (gans),
2018.

[6] Chaoyue Wang, Chang Xu, Xin Yao, and
Dacheng Tao. Evolutionary generative adver-
sarial networks, 2018.

[7] Junjie Li, Junwei Zhang, Xiaoyu Gong, and
Shuai Lü. Evolutionary generative adversar-
ial networks with crossover based knowledge
distillation, 2021.

Figure 5: Latent interpolation: Ours.

[8] Junjie Li, Jingyao Li, Wenbo Zhou, and Shuai
Lü. Ie-gan: An improved evolutionary gen-
erative adversarial network using a new fit-
ness function and a generic crossover opera-
tor, 2022.

[9] Guohao Ying, Xin He, Bin Gao, Bo Han, and
Xiaowen Chu. Eagan: Efficient two-stage evo-
lutionary architecture search for gans, 2022.

4

